Rastlose Flussläufe
Die Landmassen der Erde sind von einem Adernetz aus Flussl?ufen überzogen. Sie formen die Landschaft, bilden Grenzen oder Verbindungen zwischen Lebensr?umen. Und sie sind dynamischer, als bisher angenommen, wie Forschende der ETH Zürich und des MIT in Boston nun zeigen.
Der Tiber floss bereits durch Rom, als Julius C?sar lebte, und fliesst auch heute noch best?ndig unter den Füssen der Touristen, welche die Engelsbrücke überqueren. Unser Bild von Flüssen ist das von unver?nderlichen Bestandteilen der Landschaft. Dieser Schein trügt, wie Forschende des MIT und der ETH Zürich nun zeigen: Flussl?ufe sind viel ver?nderlicher, als bisher angenommen. Und erstmals k?nnen sie Vorhersagen treffen, wie und in welche Richtung sich Flussl?ufe verschieben.
Sean Willett, ETH-Professor am Institut für Geologie, und seine Kollegen an der ETH und vom Massachusetts Institute of Technology (MIT) entwickelten eine Berechnungsmethode, welche den Grad des Gleichgewichts zwischen Flusssystemen bestimmt. Je ausgeglichener benachbarte Flusssysteme sind, desto weniger werden sie sich im Laufe der Zeit ver?ndern. Befinden sich Flusssysteme im Ungleichgewicht, ver?ndert sich das Flussnetzwerk, um ein Gleichgewicht herzustellen, das heisst, dass sich Flussarme verschieben. ?Dabei kann sogar ein Fluss einem anderen buchst?blich einen Seitenarm anzapfen und dadurch dessen Fliessrichtung ?ndern?, erkl?rt Willett.
Das Streben nach Balance
F?llt Regen auf eine Landschaft und sammelt sich erst in Rinnsalen, die sich dann zu einem Bach zusammenfinden, nennen Forscher dieses Stück Landschaft ein Wassereinzugsgebiet. Liegen zwei Wassereinzugsgebiete getrennt von einer Bergkuppe und ist das Gel?nde auf beiden Seiten unterschiedlich steil abfallend, erodiert der Boden auf einer Seite der Wasserscheide schneller als auf der anderen. So entsteht ein Ungleichgewicht zwischen den beiden Einzugsgebieten. Im Laufe der Zeit tr?gt das Wasser die eine Seite des Berges schneller ab als die andere, so dass sich das eine Wassereinzugsgebiet hin zum anderen verschiebt, bis beide in der Balance sind.
Mit der neuen Berechnungsmethode, die Charakteristika wie die Geometrie der Flussl?ufe und ihre H?henlage über dem Meer berücksichtigt, untersuchten Willett und seine Kollegen drei grosse Flusssysteme und die sie umgebenden Landschaften: im L?ssplateau in China, in der ?stlichen Zentralkette Taiwans und im Südosten der USA. Im tektonisch stabilen L?ssplateau hat das dortige Flussnetzwerk einen nahezu ausbalancierten Zustand erreicht, w?hrend in der erdgeschichtlich relativ jungen Zentralkette Taiwans noch ein hoher Grad an Ungleichgewicht vorliegt. Dementsprechend sind die Flussl?ufe dort in steter – wenn auch langsamer – Ver?nderung. Anhand ihrer Berechnungen k?nnen die Forschenden auch vorhersagen, in welche Richtung sich die Grenzen zwischen den verschiedenen Wassereinzugsgebieten verschieben.
Dynamische Landschaften und Artenvielfalt
Unerwartet waren insbesondere die Ergebnisse im Südosten der USA: Obwohl die Gegend seit hunderten Millionen Jahren relativ stabil war – das heisst, nicht durch Plattentektonik oder Erdbeben ver?ndert wurde – sind auch dort die Flusssysteme im Ungleichgewicht und in Bewegung. Die Forschenden k?nnen aus dem Grad der Dysbalance zwischen den Einzugsgebiet zweier Flüsse in Georgia und South Carolina ablesen, dass der Savannah River Seitenarme des Apalachicola River anzapft. Wissenschaftler haben bereits Anzeichen dafür gefunden, dass dies tats?chlich geschieht, was die neue Studie nun best?tigt. Vor allem für die Evolution im Wasser lebender Tiere und Pflanzen spielen solche Ereignisse eine Rolle. Durch Ver?nderungen der Landschaft k?nnen Populationen getrennt oder zusammengeführt werden, so dass sich Genpools entweder separat weiterentwickeln oder neu durchmischen.
Flüsse sind nicht nur selber ein ?kosystem, sie bilden auch eine natürliche Grenze zwischen verschiedenen ?kosystemen. Die Dynamik von Flussl?ufen und die Artenvielfalt h?ngen deshalb direkt zusammen. Je mehr sich eine Landschaft ver?ndert – und Flüsse sind eine treibende Kraft hinter solchen Ver?nderungen – desto eher ver?ndert sich die Zusammensetzung der in diesem Gebiet vorkommenden Arten. So hat die grosse Artenvielfalt des US-amerikanischen Südostens, der weltweit als Hotspot der Biodiversit?t gilt, vermutlich auch damit zu tun, dass sich die dortigen Flusssysteme wandeln.
Entstehungsgeschichte entr?tseln
?Bisher dachten Wissenschaftler, es brauche zwischen einer und mehreren zehn Millionen Jahren, bis ein Flusssystem ein Gleichgewicht erreicht?, sagt Willett. Betrachte man den Südosten der USA, wo tektonisch seit fast 200 Millionen Jahren kaum etwas passiert ist, und wo die Flusssysteme noch immer weit davon entfernt sind, ausgeglichen zu sein, müsse man eher von mehreren hundert Millionen Jahren ausgehen. ?Da sich w?hrend dieser Zeit die Landschaft durch Tektonik, Erdbeben und Vulkanausbrüche ver?ndert, erreichen Flusssysteme vermutlich nie ein stabiles Gleichgewicht.?
Mithilfe ihrer Berechnungsmethode wollen Willett und seine Kollegen nun weitere Flusssysteme der Erde untersuchen und ihrer Dynamik auf den Grund gehen. Insbesondere den Einfluss unterschiedlicher tektonischer Aktivit?t und verschiedener Klimabedingungen gelte es weiter zu ergründen, so Willett. Die neue Berechnungsmethode sei ein wertvolles Werkzeug, um zu verstehen, wie sich die Landschaft im Laufe der Jahrmillionen geformt hat und aus der Momentaufnahme der heutigen Landschaften ihre Entstehungsgeschichte zu entschlüsseln.
Video der MIT News (Englisch):
Literaturhinweis
Willett SD, McCoy SW, Perron JT, Goren L, Chen CY: Dynamic Reorganization of River Basins. Science, March 6, 2014, DOI: externe Seite 10.1126/science.1248765