Mit Silber-Atom Licht ein- und ausschalten

Forscher um Jürg Leuthold, Professor für Photonik und Kommunikation, haben den kleinsten integriert optischen Schalter der Welt geschaffen. Durch das Anlegen einer kleinen Spannung wird ein Atom verschoben und der Schalter ist an- oder ausgeschaltet.

Vergr?sserte Ansicht: Ein-Atom-Schalter
Der Schalter basiert auf der spannungsbedingten Verschiebung eines oder mehrerer Silberatome in den schmalen Spalt zwischen einer Silber- und einer Platinplatte. (Illustration: Alexandros Emboras / ETH Zürich)

Die Menge an Daten, die weltweit über Kommunikationsnetzwerke ausgetauscht werden, steigt mit atemberaubender Rate an. Zurzeit nimmt die Datenmenge für drahtgebundene und mobile Kommunikation jedes Jahr um 23 beziehungsweise 57 Prozent zu. Ein Ende dieses Wachstums ist nicht absehbar. Das bedeutet aber auch, dass s?mtliche Netzwerk-Komponenten immer effizienter werden müssen.

Zu diesen Komponenten geh?ren sogenannte Modulatoren, welche die Information, die zun?chst in elektrischer Form vorliegt, in optische Signale umwandeln. Modulatoren sind also nichts anderes als schnelle elektrische Schalter, welche ein Lasersignal im Takt der eingehenden elektrischen Signale an- oder ausschalten. Modulatoren werden in Rechenzentren zu Tausenden verbaut. Diese haben allerdings noch immer den Nachteil, dass sie ziemlich gross sind. Sie messen einige Zentimeter und brauchen, in grosser Zahl eingesetzt, viel Platz.

Vom Mikro- zum Nanomodulator

Dass es kleiner und energieeffizienter geht, bewies die Arbeitsgruppe von Jürg Leuthold, Professor für Photonik und Kommunikation, schon vor einem halben Jahr. Damals stellten die Forscher einen Mikromodulator vor, der nur noch 10 Mikrometer misst und damit um den Faktor 10‘000 kleiner ist als kommerziell verwendete Modulatoren (siehe ETH-News).

Nun legen Leuthold und seine Mitarbeiter noch einen Zahn zu. Sie entwickelten den kleinsten optischen Modulator der Welt. Ihre neuste Entwicklung wurde soeben in der Fachzeitschrift ?Nano Letters? vorgestellt.

Kleiner geht es wohl nicht mehr: Dieses Bauteil arbeitet auf dem Niveau von einzelnen Atomen. Dies entspricht einer weiteren Verkleinerung um den Faktor 1000, wenn man den Schalter samt Lichtleiter miteinbezieht. Der eigentliche Schalter ist allerdings noch kleiner – atomar klein. Der Modulator ist sogar wesentlich kleiner als die Wellenl?nge des verwendeten Lichts. Für die optische Signalübertragung in der Telekommunikation wird Laserlicht von einer Wellenl?nge von 1,55 Mikrometer benutzt. Normalerweise bestimmt diese Gr?sse die kleinstm?gliche Dimension des Bauteils. ?Bis vor kurzem hielt selbst ich es für unm?glich, dass wir dieses Limit noch unterbieten k?nnen?, betont Leuthold.

Neuer Aufbau

Doch sein Postdoc Alexandros Emboras hat die Gesetze der Optik Lügen gestraft, indem er eine neue Anordnung für den Bau eines Modulators realisierte. Dieser Aufbau hat es erm?glicht, in die Gr?ssenordnung von einzelnen Atomen vorzudringen, obwohl die Forscher Licht mit ?Standard-Wellenl?nge? verwendeten.

Emboras Modulator besteht aus zwei winzigen Pl?ttchen, einem aus Silber und einem aus Platin, auf einem Lichtwellenleiter aus Silizium. Die beiden Pl?ttchen sind in einem Abstand von bloss wenigen Nanometern nebeneinander angeordnet, wobei eine kleine Ausbuchtung des Silberpl?ttchens in den Spalt hineinragt und das Platinpl?ttchen beinahe berührt.

Kurzschluss dank Silberatom

Und so funktioniert der Modulator: Licht, das aus einer Glasfaser austritt, wird über den Lichtwellenleiter zum Eingang des Spalts geleitet. ?ber der metallischen Oberfl?che wandelt sich das Licht in ein Oberfl?chen-Plasmon um. Von Plasmonen spricht man, wenn Licht die Energie an Elektronen der ?ussersten Atomschicht der Metalloberfl?che abgibt und diese zu Schwingungen anregt. Diese Elektronenoszillationen haben einen viel geringeren Durchmesser als der Lichtstrahl selbst. So k?nnen diese in den Spalt eindringen und die enge Stelle passieren. Auf der anderen Seite des Spaltes k?nnen die Elektronenschwingungen wieder in optische Signale umgewandelt werden.

Vergr?sserte Ansicht: Optischer Schalter
Auf einem Lichtwellenleiter (blaues Band) aus Silizium liegen ein Silber- (hellgrau) und ein Platinpl?ttchen (mint). (Grafik: A. Emboras/ETH Zürich)
Vergr?sserte Ansicht: Optischer Schalter
Testanordnung im Labor, mit welcher die neuartigen Schalter geprüft wurden. (Bild: ETH Zürich / Peter Rüegg)

Legt man nun an das Silberpl?ttchen eine Spannung an, wandert ein einzelnes – h?chstens aber ein paar wenige - Silberatom zur Spitze des Zahns und platzieren sich an dessen Ende. Dadurch werden die Silber- und Platinpl?ttchen miteinander kurzgeschlossen, so dass zwischen ihnen ein elektrischer Strom fliesst. Dies schliesst das Schlupfloch für das Plasmon; der Schalter kippt und der Zustand wechselt von ?An? auf ?Aus? oder umgekehrt. Sobald die Spannung wieder unter einen gewissen Schwellenwert sinkt, wandert ein Silber-Atom zurück. Die Lücke ?ffnet sich, das Plasmon fliesst, der Schalter steht wieder auf ?An?. Dieser Vorgang l?sst sich millionenfach wiederholen.

Der an dieser Arbeit beteiligte ETH-Professor Mathieu Luisier hat das System mit einem Hochleistungsrechner am CSCS in Lugano simuliert. Damit konnte er best?tigen, dass der Kurzschluss an der Spitze des Silberzahns aufgrund eines einzigen Atoms zustande kommt.

Echtes digitales Signal

Da sich das Plasmon nur entweder ganz oder gar nicht durch die Engstelle bewegt, entsteht ein echtes digitales Signal – eine Eins oder eine Null. ?Damit erzielen wir eine digitale Schaltung wie bei einem Transistor. Nach einer solchen L?sung haben wir lange gesucht?, sagt Leuthold.

Noch ist der Modulator nicht serienreif. Zwar hat er den Vorteil, dass er – anders als andere Ger?te, die in diesen Dimensionen mit Quanteneffekten arbeiten –bei Raumtemperatur l?uft. Doch für einen Modulator ist er noch recht langsam: Bis anhin funktioniert er nur für Schaltfrequenzen bis in den Megahertz-Bereich. Die ETH Forscher m?chten ihn noch für Frequenzen im Giga- bis Terahertz-Bereich trimmen.

Lithographie-Verfahren verbessern

Auch die Lithografie-Methode, die Emboras für den Bau der Teile von Grund auf neu entwickelte, wollen sie weiter verbessern, so dass solche Bauteile in Zukunft zuverl?ssig erstellt werden k?nnen. Derzeit gelingt die Herstellung nur in einem von sechs Versuchen. Dies werten die Forscher allerdings bereits als Erfolg, da Lithographie-Verfahren auf der atomaren Skala Neuland sind.

Um die Forschung am Nano-Modulator weiterzuführen, hat Leuthold sein Team verst?rkt. Um eine kommerziell verfügbare L?sung zu erarbeiten, w?ren jedoch mehr Ressourcen n?tig, gibt er zu bedenken. Trotzdem ist der ETH-Professor überzeugt, mit seinem Team in den kommenden Jahren eine praktikable L?sung pr?sentieren zu k?nnen.

Literaturhinweis

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, Atomic Scale Plasmonic Switch, Nano Letters 16, 709-714 (2016). DOI: externe Seite 10.1021/acs.nanolett.5b04537

JavaScript wurde auf Ihrem Browser deaktiviert